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SUMMARY

This paper presents a computer-aided design procedure for generating bevel
gears. The development is based on examining a perfectly plastic, cone-shaped
gear blank rolling over a cutting tooth on a plane crown rack. The resulting
impression on the plastic gear blank is the envelope of the cutting tooth.

This impression and envelope thus form a conjugate tooth surface. Equations
are presented for the locus of points on the tooth surface. The same proce-
dures are then extended to simulate the generation of a spiral bevel gear.
The corresponding governing equations are presented.

INTRODUCTION

Bevel gears are the principle means of motion and power transmission
between intersecting shafts. Their use is widespread. The geometrical cha-
racteristics of bevel gears have long been documented by the American Gear
Manufacturers' Association (AGMA, 1964) and others (Dudley, 1962; Dyson, 1969;
Bonsignore, 1976; Litvin et al., 1975, 1982, 1983; Baxter, 1966; Huston and
Coy, 1981,1982a,b). Recent advances in computer-aided design present opportu-
nities for a new look at the geometry of these gears. These computer-based
procedures also provide a means for optimizing the geometry.

In a previous paper (Chang, Huston, and Coy, 1984) we have demonstrated
the feasibility of this procedure to determine a spur gear tooth profile. The
basic idea was to use the envelope of a family of curves to develop an invo-
lute spur gear tooth profile. The study demonstrated that the envelope of an
inclined straight-lTine segment on a rolling gear blank is an involute of a cir-
cle. The inclined line segment in turn represented the rack tooth of a hob
cutter. Such a procedure provides a means for analytically and numerically
determining the tooth profile, given a cutter profile.

*Work funded under NASA Grant NAG3-188.



In the current paper we extend these ideas to the generation of both
straight and spiral bevel gears. The paper itself is divided into four sec-
tions with the section following the Symbols providing preliminary ideas use-
ful in this sequel. The next two sections describe the formulation of string
and spiral bevel gear tooth surfaces. This is followed by a discussion of
applications.

SYMBOLS

The following symbols are used in the section for development of a
straight bevel gear tooth.

Rm Mean radius of crown gear in pitch plane

(R] Coordinate transformation matrix; from S to S
[Ry1 Coordinate transformation matrix; from S; to S
(Ry] Coordinate transformation matrix; from Sy to $
[R3] Coordinate transformation matrix; from § to S
r Position vector in S

fq Position vector in S

rij Components of [R]

S(X,Y,2) Cartesian coordinate system stationary with ground
S ((X.Y.D Cartesian system stationary with generated gear

S1(X7,Y7,Z1) Intermediate Cartesian coordinate system

S2(X2,Y2,Z2) Intermediate Cartesian coordinate system

Xp Projection of X axis on crown gear pitch plane
a Angular position of gear referenced to system S
a0 Initial angular position of gear

Pitch angle of pinion
Angle of rotation of generated gear

Complement of pressure angle of cutter

< © (OIS

Cutter's orientation angle on pitch plane

The following symbols are used in the section for development of a spiral
bevel gear tooth.

B Derivative of T with respect to ¢»
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Te Coordinate translation transformation matrix; from S¢ to 9

Tgp Coordinate translation transformation matrix; from S, to Sq
t; Components of T

v Vertical machine setting of cutter

W Angular speed ratio

Zo Zc intercept of cutter surface

a Surface coordinate of cutter

Y Root angle of pinion

Yo Pitch angle of pinion

e Angle of rotation of system S. reference to §
L3 Angle of rotation of gear

é2 Angle of rotation of gear blank

d10 Initial angular position of gear

¥ Complement of pressure angle of cutter edge

wg Rotation rate of gear

wp Rotation rate of pinion

ENVELOPE OF A FAMILY OF SURFACES

Consider a family of surfaces represented by an equation of the form
F(xy,%X2,Xx3,t) = O with a parameter t. Let S be a surface of the family and
let it be intersected by neighboring surfaces S'. If S and S' correspond
to the values t and t + At, the curve is represented by the simultaneous
equations

F(xy,x2,%3,t) =0

17
F(xy,x2,x3,t + At) =0
It may also be represented by the equations

F(x71,x2,%x3,t) =0

(2)
F(x],xz,x3,t + At) - F(x],xz,x3,t)
At =0



The surface [F(xy,xp,x3,t + At) - F(xy,x2,x3,t)>1/4t = 0 goes through the curve
common to the two surfaces F(xy,x2,x3,t) = 0 and F(xy,x2,x3,t + At) = 0.

When S' approaches S as a limit (i.e., when At approaches zero) the inter-
section curve will approach a limiting curve. This curve is given by

F(xy,x2,x3,t) = 0
(3

(x t) =0

QJlQ)
[ g i |

1°%2 %3

Equation (3), when t is fixed, represents a curve on the surface of the fam-
ily. The same equation, with t variable, will represent a family of curves
and will generate a surface. This surface is the envelope of the given fam-
ily. The result of eliminating t 1is the equation of the envelope (Graustein,
1935).

In the two-dimensional case the envelope of a family of curves is a curve tan-
gent to the given family. For example, the envelope given by an inclined
straight-1ine segment on a rolling gear blank is found to be an involute of a
circle (Chang, Huston, and Coy, 1984).

In the following sections these procedures are generalized to simulate the
straight bevel and spiral bevel gear tooth surface generation process. The
family of surfaces created by the cutter generates an envelope in the gear
blank. The envelope in the gear blank then forms a conjugate tooth surface.

DEVELOPMENT OF A STRAIGHT BEVEL GEAR TOOTH SURFACE

The cutter used for the surface generation of a straight bevel gear tooth
is called the basic crown rack. Figure 1 depicts the machining model of the
straight bevel gear tooth generation process. The basic crown rack R is con-
sidered to be fixed on the imaginary crown gear pitch plane C as a rack step,
as depicted in Fig. 2. The generated gear blank G is a cone with the vertex
at the machine center 0. The gear blank is allowed to roll on the crown gear
pitch plane C. The crown gear pitch plane is an imaginary fixed plane. MWhen
the gear blank rolls over the crown rack step, the envelope of the basic crown
rack forms the tooth surface of the straight bevel gear.

The coordinate system used to describe the crown gear is S(X,Y,Z,) with
or1g1n at 0. The coordinate system S(X,Y,2) is fixed on the gear blank with
origin at 0. The gear blank is allowed to rotate through an angle © about
X. The pitch angle of the gear blank is denoted as y. The initial position
of the gear blank is defined by angle «ap, which is the angle between the
axis X and_the projection of the X axis on the crown gear pitch plane,
denoted by Xp. During the gear blank rolling motion the angular position of
the gear b]anE is defined by angle «, where a is measured between X, and
X. From this geometry we obtain the relation between © and « as

=ap - 0 tan y (4

The coordinate system S may be obtained by coordinate transformation of
the system S in the following steps:



Step | Axis of Angle Coordinate Rotation
rotation | turned system matrix

0 - - At XYZ initially --

] a o SRARA R}

2 s -y X2Y222 R2

3 X2 8 ;;E R3

The indicated rotation matrices are

-sina O

€OS a
[R1] = |sin a cos a O (%)
0 0 1
-cos vy O -sin y-
[R2] =10 ] 0 (6)
Lsin vy O Cos vy
K 0 0
[R3] = |0 cos® -sin® «n
0 sin 8 cos O
L d

The position vectors ¥ with the components (x,y,z) and_¥gq with the
components (x,y,z) locating a typical point in S and S are related by the
expression

From Egs. (5) to (7) the elements of [R], rij(i,j = 1,3), are

1] = COS a COS vy

rig = -€0s a sin y sin © - sin a cos

ri3 = -€o0s a sin y cos © + sin a sin 6

rp] = sin a Ccos vy

rop = -sin a sin y sin & + cos a cos © (9)
cos a sin ©

r23 = -sin a sin y cos ©
r31 = siny

r32 = sin @ cos y

r33 = COS © COS vy



EQUATION FOR CROWN RACK AND STRAIGHT BEVEL GEAR TOOTH SURFACE

The basic crown rack may be viewed as a straight cutting blade reciprocat-
ing in the radial direction. The tooth surface of the rack thus forms an
inclined plane passing through the crown gear center. The pitch plane of the
cutter surface is shown in Fig. 2. The normal plane view in Fig. 3 shows the
rack profile. The equation of the rack surface may be expressed in terms of
system S as

Xx tany -y -2z2cot¢d =20 10

where ¢ is the angle between the cutter face and the XZ plane, and ¢ is
the complement of the pressure angle of the cutter as shown in Fig. 2. ~
The cutter's surface may be expressed in terms of the gear blank's system S
by substituting Egs. (8) and (9) into Eq. (10). This leads to

X[(tan y cos a - sin a)cos y - cot ¢ sin y]
+ ylsin y sin 8(sin o - tan ¢ ¢cos a) - cos B(cos a + tan ¢y sin )
- cot ¢ cos y sin 6]
+ 2[sin y cos ©(sin a - tan ¢ cos a) - Sin ©(cos a + tan ¢ sin a)
- cot ¢ cos y cos 6] = 0 = F(X,y,Z,6) an

Following this procedure, to determine the envelope of the cutter surface
on the generated gear blank, we evaluate the partial derivative of Eq. (11)
with respect to parameter 6, the rotation angle of the gear blank. This
produces the relation

X[sin y(tan ¢ sin o + cos )]
+ ylsin ® (1 - sin y tan y)(cos o + tan ¢ sin a)
+ €0s O(sin y - tan y)(sin a - tan ¢ cos a) - cot ¢ cos y cos 6]
+ z[cos ©(1 - sin y tan y)(cos a + tan y sin a)

- sin ©(sin y - tan y)(sin a - tan y cos a) + cot ¢ cos y sin 861 = 0 (12)
Let X be an independent variable. Then, from Egs. (11> and (12), §y
and 2 may be evaluated in terms of X. Observe that since the coefficients

are functions of ©, the tooth surface has the parametric form

X =X
y = y(X,0) (13)
7 = 2(X,8)



where X and © are the surface coordinates. Equation (13) represents the
envelope of the rack relative to the gear blank. This represents the tooth
surface of the straight bevel gear.

DEVELOPMENT OF A SPIRAL BEVEL GEAR TOOTH SURFACE

A spiral bevel gear tooth surface is developed in a similar manner. Fig-
ure 4 depicts a circular cutter generating a spiral bevel gear. The cutter is
mounted on the cradel of a generating machine. MWhen the cutter rotates about
its own axis, it forms a surface that simulates a crown gear. As the cradle,
and hence the cutter, rotates about Zg at the rate wg and the gear blank
rotates about Zp at the rate wp, the cutter will genérate a spiral bevel
gear. The cutting speed is independent of wgq and wp. It is not related to
the kinematics of tooth generation. The relation between wg and wp is
simply

where Ng and Np are the numbers of teeth in the crown gear and generated
gear, reSpectively.

The coordinate system used to describe the crown gear is S1(Xy,Y71,Z71)
with origin at 0y. The crown gear G with frame Sy fixed in G rotates
through an angle ¢ about Z5 with respect to a global coordinate system
Sg(X ,Yg,Zg) with the origin a% Og as_in Fig. 4. The position vectors 1,
with” thé components (xj,yy,27), and rg, with the components (xg,yg,z ), locat-
ing a point in S7; and Sg are related by the expression (see’Fig. g)

P o= [Rig) g (15)

where [R1g] is an orthogonal transformation matrix given by

cos ¢] sin ¢] 0
[R]g] = |-sin ¢] cos ¢] 0 (16)
0 0 1

Let a coordinate system Sc(Xc,Y¢.Z¢) be fixed on the cutter with origin
at Oc(H,v,0). Let H and V be the horizontal and vertical machine settings
(see Fig. 5). The cutter rotates through an angle 6 about axis Z.. Posi-
tion vectors T, with the components (x¢,Xc,z¢) locating a point relative to
Sc, and Ty are related by the expression

re = [Rc1] ry o+ [Rc1] T]c a7



where [Rc1] and Ty are

cos © sin® 0

[Rcl] = |-sin® cos® O (18)
0 0 ]
and
H
Tlc = |V a9
0

Let the coordinate system S»(X3,Y2,Z7) be fixed in the gear blank. Let
Sp rotate through an angle ¢p about Zp with respect to a second giobal
coordinate system Sp(X Yp.lp) (see Figs. 4, 6, and 7). The position vec-
tors rpy, with the components (xp,y ,zp), and rp, with the components
(x2,¥2,22), locating a point in Sy and Sy are related by the expression
Fp = [Rp2] o (20)

where the transformation matrix [szl from Sy to Sp is given by

cos ¢2 -sin ¢2 0
[Rp2] = |sin ¢2 cos ¢2 0 @n
0 0 ]
The two global coordinate systems Sg and S, are related by the root
de

angle y of the generated gear and the addendum of the cutter tooth h (see
Figs. 4, 6, and 8.) Hence, Fg and rp are related by the expression

where
1 0 0
[Rgp] = [0 siny -cos ¥y (23
0 cos y siny
and



N 0
T -1lo (24)
o |

During the cutting process the simulated crown gear rotates in such a way
that the motion is conjugate with the generated gear blank. In Fig. 6 the
pitch element 0yP is an instantaneous axis for these "conjugate gears."”

Hence, their angular velocity components on the pitch element are equal. That
is,

¢s sin Yo = 6 coslyy - ¥) (25)

where yg is the pitch angle of the generated gear. Integrating Eq. (25)
with respect to time then leads to the relation

sin 0
1 = Tostyg - v 27 %10 (26)

where ¢109 1s a constant determined by initial conditions.

Let the constant parameter w be defined as

sin Yo
W= ———— 27
cos(yO -vy)

Combining Eqs. (14), (25), and (27) leads to the relation

¢

; (28)
)

1
W

_cz Laz
]
Oi I_cz

CIRCULAR CUTTER SURFACE

In Fig. 9 the rotation of the cutter with a straight blade decribes a con-
ical surface of revolution with vertex angle (w - 2yg). The mean radius of
the head cutter measured in the plane Z. = 0 is r¢. The apex of the cone is
at VvV with coordinates (0,0,2zg9) in Sc. The coordinates (x¢, yc, Z¢) of an
arbitrary point C on the surface of revolution can then be expressed by the
surface coordinates 2zc and a« as

>
I

c (zO - zc)cot Yo COS a
(29)

(2

<
o
[l

0" zc)cot Yo sin a

10



Equation (29) may also be expressed in the form

2 2

2 2
f(xc.yc.zc) = tan vo(xc + yc) - (z0 - zc) =0 (30)

The cutter surface may be expressed in the gear blank system S; by
substituting from Eqs. (15), (20), and (22) into Eq. (17). This leads to

re = [Rc]][ng][R ][szlr2 + [R. IR, Im__ + [RCl]Tlc = [Elr, + 7T

gp 9 ¢gp
(31
where [E] and T are defined as
(E) = [Rcl][R‘g][Rgp][szl (32)
and

By substituting from Egs. (16), (18), (19), (23), and (24) into Eqs. (32) and
(33), the elements of (E] and T, ey and ty(1,§, = 1,3), are found to be

€y = COS ¢, COS(8 + @) + sin y sin ¢, sIn(O + ¢))

e, = -sin ¢2 cos(O + 0‘) + sin y cos ¢2 sin(@ + ol)

ey3 = ~COS y sin(@ «+ ¢])

e, = -Cos ¢z sin(o «+ 01) + sin y sin 02 cos(e + ol)

¢y, = sin 02 sin(® «+ 0]) + sin y cos 02 cos(@ + 01) (34)
e,y = -COS v cos(® + ¢,)

@4y = COS vy stn 02

ey, = COS v COS ¢,

933 = s$in Y

and
t‘ = Hcos ©+Vsineé
t2 = -H sin© + V cos © (35)

t, = -h

3

1




Hence, the cutter surface expressed in the S» coordinate system may be
obtained by substituting from Egs. (31), (34), and (35) into Eq. (29). That
is,

(e]]tan Yo + €3;C0S a)x2 + (elztan Yo + €4,C08 a)y2 + (e13tan ¥y + €33C0S a)z2
= (zO - t3)cos a - t] tan ¥q

and
(eZ]tan Yo + e3]sin a)x2 + (elztan Yo + e3251n a)yz + (e]3tan Yo * e33sin oL)z2

= (zO - t3)sin a - t2 tan ¥ (36

SPIRAL BEVEL GEAR TOOTH SURFACE EQUATION
Equations (36) represent the generating surface seen by the gear blank.
In determining the envelope of the cutter surface on the gear blank, it is
useful to evaluate the partial derivative of FC in Eqg. (31) with respect to
the parameter ¢2. That is,

ar ar, a3
o 9E |~ 2 aT
8¢2 a¢2 2 a¢2 a¢2

The second term is zero since rp is fixed in Sp. From Eq. (35) the last
term is also zero because the cutting speed is independent of the gear blank

rotation. Let the component of the first term be djj. Then djj; can be
determined from Eq. (34), and Eq. (37) may be rewritten in the form
. i
arc

3, [dij]r2 (ij = 1,3 | (38

d]] = -sin ¢, cos(6 + ¢])(1 - wsiny) + (sin y - w)cos 9, sin(@ + ¢])

d]2 = -Cos ¢, cos(O + ¢])(1 - wsiny) - (sin y - w) sin ¢, sin(o + ¢])

d]3 = -W COS y COS(B + ¢])

d21 = sin ¢, sin(® + ¢])(1 - wsiny) + (sin y - W) coOS ) cos(® + ¢])

d22 = cos ¢, sin(6 + ¢])(1 - wsiny) - (sin y - w)sin ¢, cos(B + ¢]) (39)
d23 = -W COS y sin(® + ¢]>

d3] = COS y €OS ¢2

d32 = -C0S y sin ¢,

daq =0



Equation (38) represents the derivative of the equation giving transforma-
tion from the cutter system to the gear blank system. It is useful for deriv-
ing the constraint equation of the cutter's motion. The derivative of the
cutter conical surface with respect to ¢, the rotation angle of the gear
blank, is (from Eq. (30))

3 . 2 ax . 3y, 3z, )
'a—(bz (Xc,yc,ZC) = 2 tan tpo Xc-a-az+ycé¢—2 +2(ZO—ZC)8—¢E=O (40

If z; 1is not equal to 2zp, we may substitute from Egs. (29) and (38)
into Eq. (40). This leads to

(tan wo(d]] COS o + d21 sin o) + d3]]x2 + [tan wo(dz] COS a + d22 sin a)
+ d32]y2 + [tan q:o(d]3 COS o + d23 sin a) + d33]z2 =0 41

Equation (41) is the constraint equation of the cutter motion on the gear
blank. Combining Eqs. (36) and (41) forms a set of simultaneous equations
representing the envelope of the cutter relative to the gear blank. The solu-
tion of the simultaneous equations describes the tooth surface impression cre-
ated by the cutter. Observe that since the coefficients are functions of (a,
$1), the solution has the parametric form

X, = Xz(a,d)])
Yy = yz(a,¢]) (42)
z, = zz(a, ¢])

where o and ¢; are the surface coordinates

DISCUSSION

Equations (11> to (13) and Eqs. (36>, (41), and (42) determine the cutter
envelopes and hence the gear tooth surface for straight and spiral bevel
gears, respectively. They form the basis for a numerical and computer graphic
representation of the tooth surface. In this context these equations repre-
sent an extension of the procedure described earlier (Chang, Huston, and Coy,
1984) from spur gear to bevel gear. The difference here, however, is that the
equations are more detailed and extensive. Hence, numerical and computer
graphic analyses are needed.

In a general sense the method simulates the kinematic relation of a
cone-shaped gear blank and the cutter. MWith the rotation angle of the gear
blank being the parameter, the envelope of the cutter profile on the gear
blank describes the gear tooth profile. The straight and spiral bevel gear
- tooth surfaces are the forms given in Eqs. (13) and (42). The machine set-

tings, the cutter radius, and the mean cone distance are the parameters that
can be varied in a design optimization analysis. An accurate finite element
mesh can also be obtained by discretizing the tooth surface.

13



In summary, it is believed by the authors that the analysis presented
herein can form a basis for numerical design studies as well as for stress and
deformation studies. Finally, the method may be readily extended to the study
of nonintersecting shaft (hypoid) gears.
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